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Abstract

In the framework of a recently proposed method for in vivo lung morphometry, acinar lung airways are considered as a set of ran-
domly oriented cylinders covered by alveolar sleeves. Diffusion of 3He in each airway is anisotropic and can be described by distinct
longitudinal and transverse diffusion coefficients. This macroscopically isotropic but microscopically anisotropic model allows estimation
of these diffusion coefficients from multi b-value MR experiments despite the airways being too small to be resolved by direct imaging.
Herein a Bayesian approach is used for analyzing the uncertainties in the model parameter estimates. The approach allows evaluation of
relative errors of the parameter estimates as functions of the ‘‘true’’ values of the parameters, the signal-to-noise ratio, the maximum
b-value and the total number of b-values used in the experiment. For a given set of the ‘‘true’’ diffusion parameters, the uncertainty
in the estimated diffusion coefficients has a minimum as a function of maximum b-value and total number of data points. Choosing
the MR pulse sequence parameters corresponding to this minimum optimizes the diffusion MR experiment and gives the best possible
estimates of the diffusion coefficients. The mathematical approach presented can be generalized for models containing arbitrary numbers
of estimated parameters.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Diffusion MRI; Hyperpolarized gas; Lung airways; Bayesian analysis
1. Introduction

Emphysema, which is one of the leading causes of death
in industrialized countries, is characterized by ‘‘abnormal,
permanent enlargement of air spaces distal to the terminal
bronchioles, accompanied by destruction of their walls,
without fibrosis’’ [1]. An accurate characterization of
emphysema requires diagnostic methods that are non-
invasive and sensitive to the regional lung microstructure

at the alveolar level in the living lung. Diffusion MR lung
imaging with hyperpolarized 3He gas has a potential to
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provide this sensitivity. Measurements of mean apparent
diffusion coefficient (ADC) of 3He gas for short (on the
order of few milliseconds) diffusion times [2–9] and long
(on the order of seconds) diffusion times [10–13] demon-
strated substantial ADC changes with the progression of
emphysema. Moreover, in a previous publication [5], we
have proposed a method for in vivo lung morphometry,
which is based on evaluation of anisotropic diffusion of
hyperpolarized 3He gas in acinar lung airways. The method
allows quantitative analysis of the geometrical parameters
describing the acinar airways and reveals a substantial dif-
ference between those in healthy and emphysematous lungs.

In any medium the atoms or molecules diffuse; that is,
the atoms perform a Brownian-motion random walk. In
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time interval D, in the absence of restricting barriers the
molecules typically sample a root mean-square distance
l0 = (2D0D)1/2 along any axis. The parameter D0 is termed
the free diffusion coefficient, which for 3He at infinite
dilution in air at 37 �C is D0 = 0.88 cm2/s. Hence 3He gas
atoms can wander distances on the order of 1 mm in times
as short as 1 ms. In lungs, the alveolar walls, the walls of
bronchioles, the alveolar ducts, sacs and other branches
of the airway tree serve as obstacles to the path of diffusing
atoms and reduce the diffusion displacement. The above
displacement estimate indicates that 3He atoms can wander
the length of several alveoli during the typical MR diffusion
measurement of several milliseconds. Therefore, the main
geometrical units considered in the model [5] are not
individual alveoli but rather cylindrical airways covered
by alveolar sleeves. Such a model was first introduced
and histologically evaluated to characterize the geometry
of acinar airways in human lungs [14]. Gas motion along
the axis of an airway is less restricted than perpendicular
to the axis; thus, diffusion in the lung is anisotropic and
can be described by two different diffusion coefficients—
longitudinal (along cylinder axis), DL, and transverse, DT,
with DL > DT. This anisotropy was shown to manifest itself
in the MRI signal even though each imaging voxel contains
a very large number of differently oriented airways that
cannot be resolved by direct imaging. In particular, this
‘‘microscopic’’ anisotropy of diffusion results in non-expo-
nential MR signal decay as a function of b-value of the dif-
fusion-sensitizing gradient. The diffusion coefficients DL

and DT were estimated from the MR signal data at several
b-values by using Bayesian probability theory. Computer
simulations of 3He gas diffusion in alveolar ducts [15] dem-
onstrated a good agreement with results of our model.
Knowing the transverse diffusion coefficient DT and its
relationship with the mean airway radius R, derived in [5]
for a specific diffusion-sensitizing pulse gradient waveform,
the mean acinar airway radius R was also estimated. A
dependence of longitudinal diffusivity on the geometrical
structure of acinar airways can also be estimated numeri-
cally using previously proposed expansile alveolar duct
model [16,17].

The proposed method [5] has shown a great potential for
evaluation of emphysema. Herein we present a theoretical
analysis of uncertainties in parameter estimates inherent
to this approach. We derive expressions for relative errors
of the estimates as functions of ‘‘true’’ values of the param-
eters, signal-to-noise ratio, the maximum b-value and total
number of b-values used in the experiment. As shown
below, for a given set of the ‘‘true’’ diffusion parameters,
the dependences of the relative errors of the diffusion coef-
ficients on the maximum b-value and total number of data
points (b-values) have minima. Choosing the MR pulse
sequence parameters corresponding to these minima opti-
mizes the diffusion MR experiment and gives the best pos-
sible estimates of the diffusion coefficients, providing that
the signal-to-noise ratio is sufficiently high to ensure the
signal remains higher than the noise level.
2. Theory

In the model, lung acinar airways are approximated by
cylinders oriented uniformly in all directions (isotropic on
the voxel scale). The 3He gas diffusion-attenuated signal
S as a function of the b-value depends on three parameters:
the longitudinal and transverse diffusion coefficients DL

and DT (or their linear combination) and the unattenuated
signal amplitude S0 [5]:

SðbÞ ¼ S0 exp �bDTð Þ p
4bDA

� �1=2

� U bDAð Þ1=2
h i

; ð1Þ

where DA = DL � DT is the diffusion anisotropy and U (x)
is the error function.

In our previous study [5], the model function (1) and
Bayesian probability theory were used to estimate the dif-
fusion coefficients DL and DT from the MR signal data
at several b-values. As shown by Bretthorst [18,19], the
Bayesian approach can also be used to analyze how the
parameter estimates depend on their ‘‘true’’ values, sig-
nal-to-noise ratio, data sampling and total number of data
values. In what follows, we will use this approach to ana-
lyze the uncertainty in the estimates of the parameters S0,
DA, and DT (we chose the diffusion anisotropy DA rather
than the longitudinal diffusion coefficient DL for the third
parameter, for convenience).

The basic quantity in this analysis is the joint posterior
probability, P ({pj}|DrI), for the model parameters {pj}
given all of the data D, the prior information I and the
standard deviation of the prior probability of the noise,
r. In a high signal-to-noise approximation, the joint poster-
ior probability can be represented in the form [18,19]:

P fpjg DrIj
� �

/ exp � Q
2r2

� �
; ð2Þ

where

Q ¼
XN�1

n¼0

ŜðbnÞ � SðbnÞ
� �2

: ð3Þ

Here S (bn) depends on the model parameters {pj} =
{S0,DA,DT} according to Eq. (1); ŜðbnÞ is determined by
the same Eq. (1) with substitution fS0;DA;DTg ! fŜ0;
D̂A; D̂Tg, where Ŝ0, D̂A, and D̂T are the ‘‘true’’ values of
these parameters. The sum in Eq. (3) is over the N evenly
spaced b-values, bn = n Æ Db, n = 0,1, . . . ,N � 1. The max-
imum b-value is bmax = Db Æ (N � 1). Generally speaking,
our analysis can be generalized for an arbitrary set of
the b-values (e.g., irregularly spaced b-values, repeated
b-values, etc.); however, we restrict our analysis to the
evenly spaced set of b-values, for which relatively simple
analytical expressions for the parameter estimates can be
obtained.

In what follows, we denote the three parameters appear-
ing in the model (1) as pS = S0, pA = DA and pT = DT. The
marginal posterior probability, represented symbolically as
P (pj|DrI), for each of the parameter pj can be obtained by
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integrating the joint posterior probability P ({pj}|DrI) over
the two other parameters:

P pj DrIj
� �

/
Z Z Y

i 6¼j

dpi

 !
P fpjg DrIj
� �

/
Z Z Y

i 6¼j

dpi

 !
exp � Q

2r2

� �
ð4Þ

(hereafter all constants which cancel with normalization
are omitted).

The multiple integrals in Eq. (4) can be evaluated numer-
ically. Generally, the probability distributions P (pj|DrI)
obtained may have rather complicated structure (see exam-
ples in Section 4). However, in the case of high signal-to-
noise ratio, the problem can be substantially simplified
because the integrand in Eq. (4) has a sharp maximum with
respect to all the arguments and the integrations in Eq. (4)
can be therefore evaluated in the Laplace approximation
(see details in Appendix; the validity of this approximation
is discussed in Section 4):

P pj DrIj
� �

/ exp �
ðpj � p̂jÞ2

2r2
j

 !
; ð5Þ

where rj is the width of the posterior probability distribu-
tion of the parameter pj,

rj ¼ ejp̂j;

ej ¼
1

SNR
� UjðD̂A; D̂T;Db;NÞ:

ð6Þ

Here ej is the relative error of the parameter estimate,
SNR ¼ Ŝ0=r is the signal-to-noise ratio of the attenuated
signal. Explicit expressions for the functions U jðD̂A; D̂T;
Db;NÞ are given in Appendix, Eqs. (23)–(25). The estimates
(mean ± standard deviation) of the parameters pj are
given by

pj

� �
est
¼ p̂j � rj ¼ p̂jð1� ejÞ: ð7Þ

The expressions for rj and ej can be equally well represented
in terms of other combinations of the diffusion parameters,
for instance, D̂L; D̂T or D̂A and the mean diffusivity D̂M ¼
ðD̂L þ 2D̂TÞ=3. These expressions can also be written in
the form of Eqs. (6); the difference will be only in the struc-
ture of the functions Iik in Eqs. (19)–(21) entering the
functions Uj. As expected, the values of ej are independent
of the choice of the parameter set used for the calculations.

If the b-value increment Db is small enough so that
Db � D̂T < 1, Db � D̂A < 1 as generally occurs, the expres-
sions for ej can be simplified and re-written in the form

ej ¼
1

SNR �
ffiffiffiffi
N
p � V jðBA;BTÞ; ð8Þ

where the functions Vj (BA,BT) depend only on two dimen-
sionless parameters BA ¼ bmaxD̂A � N=ðN � 1Þ, BT ¼ bmaxD̂T�
N=ðN � 1Þ. For sufficiently large N and fixed bmax, the
arguments to the functions Vj become independent of N
and the relative errors ej turn out to be inversely proportional
to
p

N.
Eqs. (6) or (8) allow calculation of the uncertainty of the

parameter estimates at given values of the ‘‘true’’ parame-
ters fŜ0; D̂A; D̂Tg, Db, SNR and N. For standard 1H imag-
ing SNR and N are independent parameters. However,
hyperpolarized 3He gas imaging is profoundly different
from 1H imaging because the longitudinal spin polarization
of 3He atoms does not recover after being flipped. This is
not a problem in some animal experiments where data
are acquired with multiple boluses of 3He gas. In most
human studies, however, hyperpolarized 3He diffusion
imaging experiments are performed in one short breath-
hold, using a fixed bolus of gas to yield all N images. This
approach also insures better reproducibility of measure-
ments as it provides for a relatively fixed state of lung infla-
tion [8]. A larger number N of b-values requires use of a
smaller flip angle, the latter being inversely proportional
to
p

N [20], in the nearly always applicable small flip angle
approximation. As a result, the signal amplitude and, cor-
respondingly, SNR turn out also to be inversely propor-
tional to

p
N, and Eq. (6) should be modified by the

substitution

SNR! SNR0=
ffiffiffiffi
N
p

; ð9Þ

where SNR0 denotes the signal-to-noise ratio of the unat-
tenuated signal with the flip angle optimized for N = 1.
The expressions for the relative errors calculated with such
a substitution (hereafter denoted as e0j) take the form

e0j ¼
ffiffiffiffi
N
p

SNR0

� U jðD̂A; D̂T;Db;NÞ: ð10Þ

In the case Db � D̂T < 1, Db � D̂A < 1, Eq. (10) reduces to

e0j ¼
1

SNR0

� V jðBA;BTÞ ð11Þ

and for sufficiently large N and fixed bmax, the e0j become
independent of N.
3. Results

The expressions derived in our study allow analysis of
how the uncertainties in the parameter estimates depend
on the experimental settings. The dependence of the ej on
SNR (or SNR0 for e0j) is similar to the 1/SNR dependence
of the standard deviation of the ADC, obtained in the
framework of the monoexponential model in [21]. Note
however, that this result is valid only for high SNR, when
the Laplace approximation used in deriving Eq. (6) is appli-
cable (see Section 5).

The dependences of the relative errors on the maximum
b-value, bmax = Db Æ (N � 1) (with number of data points N

fixed), are shown in Fig. 1a for fixed SNR = 100, N = 6,
D̂L ¼ 0:4 cm2=s, and D̂T ¼ 0:1 cm2=s. These values of the
diffusion coefficients are typical for healthy human lungs;
hereafter they will be used as default. For clarity, the ej cor-



Fig. 1. (a) The relative errors ej as functions of the maximum b-value, bmax, for a fixed number N = 6 of data points. (b) The signal S, Eq. (1), as a function
of the b-value. The default values of the parameters are assumed. The arrows on the decay curve indicate values of b at which each of the errors ej on the
panel (a) are minimum.
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responding to the parameters S0, DL, DT, DA, and DM are
denoted eS, eL, eT, eA, and eM, respectively.

As seen in Fig. 1a, all the relative errors except eS as
functions of bmax have broad minima. In general, the posi-
tions of these minima depends on the ‘‘true’’ values of the
diffusion parameters and the number N of data points (for
the default values of the parameters and N = 6, the minima
occur at bmax = 14 s/cm2 for eM, at bmax = 17 s/cm2 for eA

and eL, and at bmax = 19 s/cm2 for eT). The relative error
eS corresponding to the unattenuated signal amplitude S0

is practically independent of bmax, because the estimated
S0 value comes primarily from the b = 0 datum. In
Fig. 1b we show the signal decay with increasing b-value
for the same default diffusion parameters, calculated
according to Eq. (1) (solid curve); the arrows mark the
positions of the minima of the corresponding relative
errors ej. Although the minima for ej are achieved at rather
high b-values, the signal S may still remain above the noise
level (due to the slower than exponential dependence of
signal on bDA in Eq. (1); see the arrows in Fig. 1b). The
signal at the b-values for the minima of ej is about 5–10%
of its initial value and is substantially higher than the noise
level for the case considered (SNR = 100).

The dependences of the ej on the number of data points
N (with bmax fixed) are demonstrated in Fig. 2 by the dotted
Fig. 2. The relative errors as functions of the number N of data points for fixed
is independent of N, Eq. (6), SNR = 100. (b) The SNR is inversely proportion
lines. Fig. 2a corresponds to the case when the SNR is
independent of N and the ej are determined by Eq. (6).
Fig. 2b corresponds to the case (relevant to hyperpolarized
gas experiments as performed currently with a single bolus
of gas for all N images) when the SNR is inversely propor-
tional to

p
N, the e0j are determined by Eq. (10).

In Fig. 2a, the relative errors monotonically decrease
with N, being proportional to 1/

p
N for sufficiently large

N (as follows from Eq. (8)). In Fig. 2b, the relative errors
e0j calculated in the case when the SNR is inversely propor-
tional to

p
N, all the relative errors (except e0S) have broad

minima and tend to constant values at large N. The posi-
tions of these minima depend on bmax; for the default val-
ues of the diffusion parameters and bmax = 10 s/cm2 (this
value of bmax is typical for our experiments [5]; see also Sec-
tion 5), the minima of all the relative errors e0j are located at
N = 4.

In Fig. 3 we present the dependences of the relative
errors e0T (Fig. 3a) and e0M (Fig. 3b) on the maximum b-val-
ue for different numbers N of data points. As seen in Fig. 3,
positions of the minima in e0T and e0M are shifting to higher
values of bmax with increasing N (the same is true for e0L and
e 0A as well). Values of e0j depend non-monotonically on N;
thus, there are global minima of e0j as functions of the two
variables: bmax and N. Values of the pairs {bmax,N} at
bmax = 10 s/cm2, and the default values of other parameters. (a) The SNR
al to

p
N, Eq. (10), SNR0 = 200.



Fig. 3. The relative errors e0T (a) and e0M (b) as functions of bmax for different numbers N of data points (shown by the numbers near the curves). The default
values of the diffusion parameters are assumed; SNR0 = 200.
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which the global minima occur can be found numerically
for any given set of the diffusion parameters (see Section 5).

4. Validity of the approach: numerical simulations

As described in Appendix, the Laplace approximation is
used for evaluating the integrals in Eq. (4). As a result, the
marginal posterior probability distributions for the param-
eters {pj} were obtained in the Gaussian form, Eq. (5).
However, the Laplace approximation is valid only under
certain conditions.

First, our model breaks down in the limit when the lon-
gitudinal and transverse diffusion constants are close to one
another, so that the diffusion anisotropy tends to 0. Formal-
ly, if D̂A ¼ 0, the quantity I123 given by Eq. (24) tends to 0
and the functions Uj tend to infinity. This is a general prob-
lem of the method used above; it was discussed in detail in
[19] for the example of the biexponential signal. In our mod-
el, in the case D̂L ¼ D̂T ð̂DA ¼ 0Þ, the signal S (b) is also
reduced to a single-exponential function, see Eq. (13), and
the peak in the joint posterior probability becomes a ridge
line. As a consequence, the Laplace approximation is not
valid and the given formulas do not apply.

Second, the validity of the Laplace approximation
requires a high signal-to-noise ratio, so that the high order
expansion terms can be ignored [19]. To illustrate this state-
ment, we evaluated the marginal posterior probability den-
sities P (pj|DrI) numerically, without using the Laplace
approximation, for different values of the parameter r.
The probability distributions for the transverse diffusivity
DT and the diffusion anisotropy DA are shown in Fig. 4
for D̂L ¼ 0:4 cm2=s, D̂T ¼ 0:1 cm2=s, Ŝ0 ¼ 1, N = 6, bmax =
10 s2/cm and three values of the SNR: 100, 50, and 25. The
black lines correspond to numerical integration in Eq. (4)
over the parameters DA and S0 for P (DT|DrI) and over
DT and S0 for P (DA|DrI); the red lines represent the
probability distributions obtained by means of the Laplace
approximation, Eqs. (5) and (6).

The analytical predictions for the standard deviations rj

and relative errors ej given by Eq. (6) were also compared
with the results of computer simulations and frequency-
of-occurence analysis (histogram). For this, Gaussian noise
was added to ideal data from Eq. (1) with known D̂A; D̂T

and Ŝ0; this generated data set was then analyzed according
to Eq. (1) to get the apparent values of DA, DT and S0 as
well as their linear combinations: DL = DT + DA and the
mean diffusivity DM = (DL + 2DT)/3. This procedure was
repeated 6 · 104 times. The procedure of fitting Eq. (1) to
each generated data set was executed in two ways: by stan-
dard v2—minimization and by the Bayesian approach. The
latter gives (for each set of generated data) two values of
each estimated parameter—the peak value and the mean
value. Comparison of the two estimates illustrates that the
peak values of the estimated parameters obtained by the
Bayesian approach practically coincide with the corre-
sponding values obtained by v2—minimization. The peak
and mean values of the parameters DT and DA obtained
by the Bayesian approach for 6 · 104 generated data sets
were statistically analyzed; the normalized frequency distri-
butions (frequency-of-occurrence histograms) of the
parameters are shown in Fig. 4 by blue and green dots,
respectively. All the distributions are normalized to yield
a total area of unity under the curve.

As evident in Fig. 4, for SNR = 100 the probability dis-
tributions P (DT|DrI) and P (DA|DrI) obtained by the
numerical integration (black lines) have a typical Gaussian
form with the maxima at the input values of the diffusion
parameters (D̂L ¼ 0:4 cm2=s and D̂T ¼ 0:1 cm2=sÞ. The
exact probability distributions practically coincide with
the distributions obtained in the Laplace approximation
(red lines). From the 6 · 104 generated data sets with
SNR = 100, the frequency-of-occurrence histogram of both
the mean and peak values demonstrate excellent agreement
with P (DT|DrI) and P (DA|DrI).

For SNR = 50, the deviation between the probability
distribution obtained by numerical integration and that cal-
culated in the Laplace approximation is more pronounced.
The frequency-of-occurrence histograms for the peak values
(blue dots) reveal additional maxima located at the same val-
ues where the curves corresponding to the exact integration
deviate from the Gaussians: at DT � 0.17 cm2/s for the
transverse diffusivity and at DA = 0 for the diffusion



Fig. 4. The posterior probability distributions P (DT|DrI) (left panels) and P (DA|DrI) (right panels) for D̂L ¼ 0:4 cm2=s, D̂T ¼ 0:1 cm2=s, N = 6,
bmax = 10 s2/cm and SNR = 100,50,25. Black lines correspond to numerical integration in Eq. (4); red lines represent the Laplace approximation. Blue
and green dots represent the normalized frequency distributions (frequency-of-occurrence histogram) of the peak and mean values of the parameters,
respectively, obtained by the Bayesian analysis of each of 6 · 104 generated data sets. Vertical dashed lines indicate the input (‘‘true’’) values.
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anisotropy. However, the histograms for the mean values of
the estimated parameters (green dots) have no such maxima
and remain in good agreement with the Laplace
approximation.

For SNR = 25, the result of the Laplace approximation
substantially deviates from the numerical integration, for
which the distribution of P (DT|DrI) is substantially non-
Gaussian. However, even for this low SNR, the half-width
of the probability distribution P (DT|DrI) turns out to be
rather close to that of the Gaussian curve and Eq. (6) pro-
vides a reasonable estimate for eT. The positions of the cen-
tral maxima in the frequency-of-occurrence histograms for
the peak values deviate from the input values. However, it
is rather interesting (and unexpected) that the maxima of
the histogram of the mean values of the estimated param-
eters are only slightly shifted from the input values. This
demonstrates that the mean values obtained from the
Bayesian analysis should be used for better estimation of
diffusion parameters at low SNR, compared to the peak
values or the values from v2—minimization (since these last
two measures practically coincide as remarked above).

5. Discussion

In the graphs shown in Figs. 1 and 2, we used default
values of the ‘‘true’’ diffusion coefficients (D̂L ¼ 0:4 cm2=s
and D̂T ¼ 0:1 cm2=sÞ characteristic of healthy human lungs.
In emphysematous lungs, the size of the airways increases,
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diffusion becomes less restricted and the parameter D̂T

increases. In extremely damaged parts of lungs, gas diffusion
becomes practically unrestricted and nearly isotropic
(D̂A ! 0, D̂L;T ! D0Þ and can therefore be described by a
single diffusion coefficient close to the free diffusion coeffi-
cient D0. In this case, the model with three independent
parameters becomes redundant and the signal can be
described by a monoexponential function with two indepen-
dent parameters. It means that our results are applicable to
healthy lungs or lungs with initial stages of emphysema,
when the difference between longitudinal and transverse dif-
fusivity is substantial. For lungs with severe emphysema,
another model of gas diffusion should be considered.

The behavior of the relative errors as functions of bmax,
Fig. 1a, can be explained as follows. In this case, with fixed
N, the bmax-dependence of the relative errors is affected by
two opposite tendencies. On one hand, very small b-values
produce only small amounts of signal attenuation. Such
data sets are extremely insensitive to the diffusion coeffi-
cients and result in large errors (except for S0; if bmax is very
small and bDT, bDL� 1, all N data points serve mainly to
determine the unattenuated signal amplitude S0). On the
other hand, overly high b-values (bDT, bDL� 1) attenuate
the signal below noise level and provide no information.
When the maximum b-value is small, the first argument
dominates and the relative errors ej decrease with increas-
ing bmax; however, for very large bmax, the second tendency
becomes dominant and ej increases with increasing bmax.
Note also that the quantity eM is substantially smaller than
the relative errors corresponding to the other diffusion
parameters. The mean diffusivity is the best-estimated
parameter because DM determines the initial slope of the
signal, S (b)/S0 = 1 � bDM + O(b2) while DA (or DL, DT

as its linear combinations) appears only in the higher terms
of the expansion with respect to b and, therefore, primarily
influences the large-b tail of the decay curve S (b) of
Fig. 1b.

A monotonic decrease of ej with increasing N for fixed
bmax, Fig. 2a, reflects the simple fact that any additional
information diminishes the estimation errors. However,
as mentioned above, such a dependence of the relative
errors takes place in the case when the SNR is independent
of N. For hyperpolarized 3He imaging with a fixed bolus of
gas to yield all N images, when the unattenuated signal
amplitude and SNR decrease (being inversely proportional
to
p

N, Eq. (9)) as N increases, the modified expressions
for the errors, Eq. (10), should be used. In this case, the
N-dependences of e0j corresponding to the diffusion param-
eters have minima at certain N depending on bmax.

As demonstrated in Fig. 3, with increasing N, the mini-
ma of the relative errors e0j as functions of the maximum
b-value are shifting toward higher values of bmax. In addi-
tion, the e0j as functions of two parameters—bmax and N—
have global minima at certain values of these variables. For
the default values of the ‘‘true’’ diffusion parameters, the
pairs {bmax,N}, at which the global minima occur, are
as follows: {22 s/cm2,11}, {18 s/cm2,7}, {13 s/cm2,5},
{19 s/cm2,8} for e0T, e0L, e0M, e0A, respectively. Clearly, lower
uncertainties in the estimated diffusion parameters can
be achieved by selecting bmax and N near these global
minima.

Let us consider an example. In the previous experi-
mental study [5], the pulse sequence with N = 6 and bmax =
7.6 s/cm2 was used. For diffusion parameters, D̂L ¼
0:4 cm2=s;D̂T ¼ 0:1 cm2=s, and SNR = 100, the relative
error for the transverse diffusivity, calculated by means of
Eq. (6), is equal to eT = 0.17. On the other hand, according
to Eq. (6) for these parameters the minimum of eT can be
achieved at a substantially higher bmax = 19 s/cm2 for
which eT = 0.09. Thus, our theory predicts that one could
gain a doubled accuracy in determining the transverse dif-
fusivity by using higher bmax, if the signal remains higher
than the noise level (see Fig. 1b). It should be noted, how-
ever, that the optimal value of bmax significantly depends
on the ‘‘true’’ values of the diffusivities that are usually
unknown and can vary substantially even in the same
patient. For example, in the ongoing experiments in our
laboratory, the values of D̂L and D̂T across patients (and
even for the same patient) are spread over the broad inter-
vals (0.35–0.7) and (0.04–0.14) cm2/s, respectively. Because
they are not a priori known, caution should be exercised in
selecting the maximum b-value to maintain the signal in all
voxels above the noise level. For example, to maintain the
signal at the level S (bmax)/S0 > 0.1 for the highest values of
D̂L;T, D̂L ¼ 0:7 cm2=s, D̂T ¼ 0:14 cm2=s, we need to restrict
the pulse sequence to bmax = 10 s/cm2, for which the rela-
tive error, eT = 0.089, remains very close to its minimum
value eT = 0.086 at bmax = 12 s/cm2. For the smallest val-
ues of the diffusivities, D̂L ¼ 0:35 cm2=s, D̂T ¼ 0:04 cm2=s,
however, the relative error becomes much higher, eT =
0.21. Hence increased SNR is required to achieve rather
small errors for both small and high diffusivities. However,
in the experiment where preliminary estimates of transverse
and longitudinal diffusivities are available, substantial
improvement (factor of 2 in above example) in parameter
estimation can be achieved by selecting the proper maxi-
mum b-values.

It is also worth noting that the locations of the minima
of the relative errors corresponding to the different param-
eters (DL, DT, DM, DA) are different. This result is impor-
tant for pulse sequence design: if the mean diffusivity DM

is of primary interest, one should use much smaller
b-values and a smaller number N of b-values than in the
case where the separate values of the longitudinal and
transverse diffusivities are targeted.

It should be emphasized that in the approach described
above a high signal-to-noise ratio is assumed. Thus, our
results for the parameter estimates should be considered
as a lower bound on the estimated uncertainties. The actual
parameter estimates obtained for any given data set will
essentially never be better than these estimates, and will
almost certainly be worse.

The traditional way to obtain lower bounds on param-
eter estimates is using the Cramer–Rao lower bound. The



A.L. Sukstanskii et al. / Journal of Magnetic Resonance 184 (2007) 62–71 69
Cramer–Rao lower bound is a theoretical result that spec-
ifies the minimum variance for a parameter estimate, giv-
en an unbiased, single parameter estimator [22,23].
However, the Cramer–Rao lower bound does not provide
the estimator; the latter must be guessed and then tested
to see if it achieves the Cramer–Rao lower bound. The
Cox theorem [24, Chapters 1–3] guarantees that the
Bayesian estimate is the best estimate one can make.
Any other technique will either do worse, or reproduce
the Bayesian results, but it will not outperform the Bayes-
ian calculation.

The calculations presented here are made for a specific
example of signal dependence on the b-value, Eqs. (1) or
(13). However, this method of estimating the uncertainties
and relative errors, based on the Bayesian approach, can
be readily generalized to a signal with different functional
dependence (or, e.g., on acquisition time) and a different
number of parameters. In the case of M parameters, the
coefficients gjk in the expansion of the function Q (see
Eq. (17)) form a symmetric square matrix G of dimen-
sionality M · M, and the integration over (M � 1) param-
eters (similar to Eq. (4)) leads to the marginal posterior
probability density of the remaining parameter, Eq. (22),
where the sought standard deviation will be proportional
to

rj �
Dj

D

	 
1=2

; ð12Þ

where D = detG and Dj is the complementary minor of the
diagonal element gjj in the matrix G.
6. Conclusion

The Bayesian analysis approach is used herein for ana-
lyzing the uncertainties in the parameter estimates in the
model of 3He gas diffusion in acinar airways. The uncer-
tainties for the transverse diffusivity, diffusion anisotropy,
and signal amplitude are analyzed as functions of the
‘‘true’’ values of the parameters, the signal-to-noise ratio,
the maximum b-value and the total number of b-values
used in the experiment. It is shown that for a given set of
the ‘‘true’’ diffusion parameters, the dependences of the
relative errors of the diffusion coefficients on the maximum
b-value and total number of data points (b-values) have
minima. Choosing MR pulse sequence parameters corre-
sponding to these minima optimizes the diffusion MR
experiment and gives the best possible estimate of the diffu-
sion coefficients, providing that the signal-to-noise ratio is
sufficiently high to ensure the signal for all b-values remains
higher than the noise level. The mathematical approach
can be generalized for models containing arbitrary num-
bers of parameters to be estimated.
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Appendix

To obtain the marginal posterior probability P (pj|DrI)
for each of the parameter pj, we need to calculate the
sum in the function Q (see Eq. (3)) and then to integrate
the joint posterior probability P ({pj}|DrI) over the two
other parameters.

When the signal as a function of b-value is described by
a one- or a sum of two-exponential function, the sum in
Eq. (3) can be easily calculated as a geometric progression
[19]. To perform such a summation in our model, we re-
write the signal S (b) (1) in the integral form:

SðbÞ ¼ S0 � exp �b � DTð Þ �
Z 1

0

dx exp �b � DAx2
� �

: ð13Þ

Substituting Eq. (13) into Eq. (3), the quantity Q can be
written as

Q ¼ S2
0 �
Z 1

0

Z 1

0

dxdy � Rðr1ðx; yÞÞ

� 2S0Ŝ0 �
Z 1

0

Z 1

0

dxdy � Rðr2ðx; yÞÞ

þ Ŝ2
0 �
Z 1

0

Z 1

0

dxdy � Rðr3ðx; yÞÞ; ð14Þ

where

r1ðx; yÞ ¼ 2DT þ DAðx2 þ y2Þ;
r2ðx; yÞ ¼ DT þ D̂T þ DAx2 þ D̂Ay2;

r3ðx; yÞ ¼ 2D̂T þ D̂Aðx2 þ y2Þ;
ð15Þ

and

RðriÞ ¼
XN�1

n¼0

exp �ribnð Þ ¼
1� exp �ri

�b
� �

1� exp �riDbð Þ ;

�b ¼ NDb ¼ bmax �
N

N � 1

� �
: ð16Þ

As compared to [19], however, we do not assume that (i)
the signal has ‘‘died’’ when the b-value reaches its maxi-
mum value bmax = Db Æ (N � 1); (ii) the b-value increment
Db is small and Db Æ ri� 1. Thus, we do not neglect the
exponential term in the numerator in Eq. (16) and do not
expand the denominator in a series with respect to Db Æ ri,
making it possible to analyze how the uncertainties of the
estimated parameters depend on the number N of data
points N for any N P 3.

The quantity Q is a very complicated function of the
parameters pj and the integrals (4) can not be evaluated
in a closed form. However, the integrand in Eq. (4) is
expected to have a sharp maximum at pj ¼ p̂j. Therefore,
the integrals (4) can be calculated in the Laplace approx-
imation (the real version of the method of stationary
phase in complex analysis), in which the function Q is
approximated by its Taylor expansion around the mini-
mum with respect to all the parameters pj up to the sec-
ond order:
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Q � constþ
X3

i;k¼1

gikðpi � p̂iÞðpk � p̂kÞ ð17Þ

(it is easy to verify that the first-order terms in the expan-
sion are equal to 0). The coefficients gik = gki in Eq. (17)
can be obtained from Eqs. (14)–(16). After some algebra,
we get

gik ¼ Ŝmik
0 I ikðDA;DT;Db;NÞ; ð18Þ

where m11 = 0, m12 = m13 = 1, m22 = m33 = m23 = 2. The
functions Iik and fik are

I ikðDA;DT;Db;NÞ ¼
Z 1

0

Z 1

0

dxdyf ikðx; yÞ

vmik ðDA;DT;Db;N ; x; yÞ; ð19Þ

v0 ¼
1� expð��bkÞ

1� expð�DbkÞ ;

v1 ¼
expð�bmaxkÞ
½expðDbkÞ� 1	2

� �b expðDbkÞ� 1ð Þ�Db expð�b kÞ� 1
� �� �

;

v2 ¼
expð�bmaxkÞ
½expðDbkÞ� 1	3

�
h
Db2 expðDbkÞþ 1ð Þ expð�bkÞ� 1

� �
:

��b2 expðDbkÞ� 1ð Þ2� 2�bDb expð�bkÞ� 1
� �i

; ð20Þ

k
 kðDA;DT;x;yÞ ¼ 2D̂Tþ D̂Aðx2þ y2Þ;

f11 ¼ f33 ¼ f13 ¼ 1; f 12 ¼ f23 ¼ y2; f 22 ¼ x2y2: ð21Þ
As the function Q is reduced to the symmetric and positive-
defined quadratic form (15) with respect to the differences
ðpj � p̂jÞ, the integration in Eq. (4) over two of three
parameters {pj} can be readily achieved resulting in the
marginal posterior probability density for the parameters
pj in the Gaussian form:

P pj DrIj
� �

/ exp �
ðpj � p̂jÞ2

2r2
j

 !
; ð22Þ

where rj are the width of the posterior probability in the
Laplace approximation,

rj ¼ ejp̂j;

ej ¼
1

SNR
� UjðD̂A; D̂T;Db;NÞ:

ð23Þ

Here the ej are the desired relative errors of the parameter
estimates, SNR ¼ Ŝ0=r is the signal-to-noise ratio; Uj are
functions of the integrals Iik given by Eqs. (19)–(21):

U 1ðD̂A; D̂T;Db;NÞ ¼ I22I33 � I2
23

I123

	 
1=2

;

U 2ðD̂A; D̂T;Db;NÞ ¼ 1

D̂A

� I11I33 � I2
13

I123

	 
1=2

;

U 3ðD̂A; D̂T;Db;NÞ ¼ 1

D̂T

� I11I22 � I2
12

I123

	 
1=2

;

ð24Þ

and
I123 ¼ I11I22I33 þ 2I12I13I23 � I11I2
23 � I22I2

13 � I33I2
12: ð25Þ

If the b-value increment Db is small enough so that
Db � D̂T < 1, Db � D̂A < 1 as generally occurs, the expres-
sions for ej can be simplified and re-written in the form

ej ¼
1

SNR �
ffiffiffiffi
N
p � V jðBA;BTÞ; ð26Þ

where Vj (BA,BT) depend only on two dimensionless
parameters BA ¼ �bD̂A, BT ¼ �bD̂T. For sufficiently large N,
the functions Vj become independent of N, and the relative
errors ej turn out to be inversely proportional to

p
N.
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